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Simple Summary: The success of HPV as an infectious agent lies not within its ability to cause disease,
but rather in the adeptness of the virus to establish long-term persistent infection. The ability of HPV
to replicate and maintain its genome in a stratified epithelium is contingent on the manipulation of
many host pathways. HPVs must abrogate host anti-viral defense programs, perturb the balance of
cellular proliferation and differentiation, and hijack DNA damage signaling and repair pathways
to replicate viral DNA in a stratified epithelium. Together, these characteristics contribute to the
ability of HPV to achieve long-term and persistent infection and to its evolutionary success as an
infectious agent.

Abstract: Persistent infection with oncogenic human papillomavirus (HPV) types is responsible
for ~5% of human cancers. The HPV infectious cycle can sustain long-term infection in stratified
epithelia because viral DNA is maintained as low copy number extrachromosomal plasmids in
the dividing basal cells of a lesion, while progeny viral genomes are amplified to large numbers
in differentiated superficial cells. The viral E1 and E2 proteins initiate viral DNA replication and
maintain and partition viral genomes, in concert with the cellular replication machinery. Additionally,
the E5, E6, and E7 proteins are required to evade host immune responses and to produce a cellular
environment that supports viral DNA replication. An unfortunate consequence of the manipulation
of cellular proliferation and differentiation is that cells become at high risk for carcinogenesis.

Keywords: HPV; papillomavirus; persistence; extrachromosomal replication; tethering; cancer;
epithelium; immune evasion; latency

1. Introduction

The Papillomaviridae family is comprised of a diverse group of ancient DNA viruses
that are prevalent amongst a wide range of host species, including mammals, birds, reptiles,
and fish. More than 650 distinct animal and human papillomavirus (HPV) types have been
identified, and the 440 HPV types have co-evolved to exist and persist within the human
population [http://pave.niaid.nih.gov/ (accessed on 16 February 2021)] [1]. The HPVs
are classified phylogenetically according to DNA sequence homology in the L1 gene
(which encodes the structural L1 capsid protein) into five genera: Alpha, Beta, Gamma,
Mu, and Nu [2]. The viruses that comprise each genus have evolved to adapt to distinct
ecological niches within their host. Specifically, viruses within the Beta, Gamma, Mu, and Nu
genera infect the cutaneous epithelium, whereas viruses within the Alpha genus infect both
cutaneous and mucosal epithelia. In addition to this distinct tissue tropism, the viruses
within these genera differ in their associations with clinical disease [3]. HPVs from the Beta
and Gamma genera cause primarily asymptomatic infections [3]. The mucosal Alpha HPV
types are further classified as low-risk HPVs (LR-HPVs) or high-risk HPVs (HR-HPVs)
based on their ability to cause cancer [3]. HR-HPV infection is the causative agent of
almost all cases of cervical cancer in women and is also highly associated with cancers of
the lower genital tract, anus, and oropharynx in both men and women [4]. Anogenital
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infection with the oncogenic HR-HPVs is very common and most infections are managed
immunologically and cleared in a period of one to two years [5]. The development of HPV-
mediated cancer is associated with long-term persistent infection; continual expression
of the viral oncogenic E6 and E7 proteins abrogates cell cycle checkpoints and inhibits
immune detection. Consequently, the infected cells over proliferate and cellular mutations
accumulate, leading to the formation of HPV-associated cancers [4].

In this review, we will describe the factors that promote persistent infection by the
oncogenic HR-HPVs.

2. Natural History of HPV Infection

Infection with the various HPV types gives rise to a spectrum of subclinical and
clinical manifestations, ranging anywhere from asymptomatic infection to benign warts
or papillomas on the skin and genitalia. While many HPVs can be considered commensal
and part of the microbiota of healthy tissue, long-term persistent infection with HR-HPVs
increases the risk for oncogenic progression and can lead to invasive cancer. As such,
HR-HPV infection is the causative agent of almost all cases of cervical cancer in women and
is also highly associated with cancers of the lower genital tract, anus, and oropharynx in
both men and women [4]. Despite the introduction of the HPV vaccine in 2006, low vaccine
uptake and vaccine hesitancy [6] will result in the continued occurrence of HPV-associated
cancers in both men and women [7]. Therefore, HPV infection will remain a significant
health burden in the upcoming years.

Individual HPV types infect and replicate in keratinocytes located within the cuta-
neous and mucosal epithelia. While the squamous epithelia of these tissue surfaces are
vulnerable to infection, the outcome of infection is likely contingent on the inherent proper-
ties of the originally infected cell. This is particularly true for HPV-associated cancers of the
cervix, oropharynx, and anus. Specifically, cells with increased susceptibility to infection
and oncogenesis reside within cellular transition zones of these defined anatomical regions.
These locations are more infection prone as the accessibility of the proliferative basal cells
is increased where the junctions of two epithelial cell types meet [8,9]. Recent studies also
support a potential role for stem cells in viral persistence and oncogenesis [10]. Infection
of a stem cell is much more likely to give rise to long-term infection than that of a transit
amplifying cell [11].

Natural HPV infection rarely persists longer than two years and over 90% of detectable
infections are resolved and not detected within five to seven years [4]. While innate
immune responses are typically able to clear incident infections early on, the propensity
of an established HPV lesion to regress depends on a robust cell-mediated response [4].
As such, persistent HPV infection occurs in those individuals who are unable to mount the
appropriate innate and adaptive immune responses.

The usual course of cervical HPV infection is initial acquisition, persistence of infection,
and less frequently, neoplastic progression (Figure 1). At early stages, infections are cleared
by the immune system and neoplasias can regress. However, it is still not clear whether
all infected individuals seroconvert and whether they are then resistant to infection by
the same HPV type [12]. The incidence of HPV infection peaks in women in their early
20s and then becomes undetectable [4]. However, a small number of women have newly
detectable infection in middle age and it is not clear whether this is due to a new infection,
or reactivation of a latent infection [12]. Latency has been observed experimentally in rabbit
models of papillomavirus infection [13,14], and focal regions of silent infection have been
detected in the human cervix [15]. Therefore, HPV latency could increase the likelihood of
persistent infection in the human population.
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Additionally, the HR-HPV genomes encode accessory genes, E4, E5, E6, and E7, that mod-
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itate evasion of innate immune responses [16]. Together, these genes function to establish 

persistent HPV infection and to support the productive HPV life cycle. A generic onco-

genic human Alphapapillomavirus genome is shown in Figure 2. 
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Figure 1. Natural history of oncogenic human papillomavirus infection. A model showing the progression of HPV infection
to invasive cancer. Infection with HPVs is usually cleared by the immune system within a couple of years. Persistently
infected cells can regress, but over time can progress to invasive cancer.

3. HPV Genome

All HR-HPVs have small circular double stranded DNA genomes that are 7–8 kb
in size and encode two sets of conserved core proteins; those required for viral DNA
replication, E1 and E2, and the structural proteins essential for virion assembly, L1 and L2.
Additionally, the HR-HPV genomes encode accessory genes, E4, E5, E6, and E7, that modify
the host epithelium to create an environment suitable for viral replication and to facilitate
evasion of innate immune responses [16]. Together, these genes function to establish
persistent HPV infection and to support the productive HPV life cycle. A generic oncogenic
human Alphapapillomavirus genome is shown in Figure 2.
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Figure 2. Map of the HPV genome. Schematic representation of an Alphapapillomavirus genome.
The green, purple, and blue arrows represent the early, accessory, and late viral open reading frames,
respectively. The upstream regulatory region (URR) shown in grey contains regulatory elements
including the origin of replication (ori) that contains binding sites for the E1 and E2 replication
proteins (denoted by a green square and circles, respectively). The early (PE), late (PL) and E8 (PE8)
promoters, and the early (pAE) and late (pAL) polyadenylation sites are indicated.
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The HPV genome is organized into three regions, two coding regions that encode the
viral proteins and a non-coding region that regulates viral transcription and replication.
The coding regions of the viral genome contain between seven and nine open reading
frames that are organized into early and late regions; the early region encodes the E1, E2,
E1ˆE4, E8ˆE2, E5, E6, and E7 proteins and the late region encodes the L1 and L2 capsid
proteins. The non-coding region, otherwise known as the upstream regulatory region
(URR), is located upstream of the early region and contains multiple cis regulatory elements
required for transcription, as well as the origin of replication [17]. Transcription from the
viral genome occurs in three phases (early, intermediate, and late) and is intricately linked
to the host epithelial differentiation program. Early viral gene transcription is initiated
from the PE early promoter in undifferentiated basal keratinocytes and is terminated at the
pAE early polyadenylation site. In suprabasal cells, intermediate transcription is initiated
from the PL late promoter and is terminated at the early polyadenylation site. This results
in increased levels of the E1 and E2 replication proteins necessary for DNA amplification.
Finally, late viral transcription is initiated from the PL late promoter, and is terminated at
the pAL late polyadenylation site, resulting in expression of the structural L1 and L2 capsid
proteins [18].

4. Overview of the HPV Life Cycle

The HPV life cycle exploits the host differentiation program of the stratified cutaneous
and mucosal epithelia for productive infection. A schematic of the HPV infectious cycle
and pattern of viral gene expression is shown in Figure 3. To initiate infection, the HPV
viral particle must first access the dividing basal cells of the lower epithelium through
a micro-abrasion or wound in the stratified epithelium. Attachment of the viral particle
to heparan sulfate proteoglycans on the basement membrane, followed by transfer to an
uncharacterized secondary receptor on keratinocytes, induces a series of conformational
changes that promote viral entry [19].

The HPV particle enters basal keratinocyte cells by endocytosis, during which the
L2 protein inserts into the membrane and cloaks the virus in a membrane vesicle [20].
L2 subsequently associates with cytoplasmic trafficking factors to facilitate transport of
HPV to the trans golgi network, where the HPV-containing vesicle resides until gaining
access to the host nucleus [21]. Following breakdown of the nuclear envelope during
mitosis [22], the vesicle enters the nucleus and, through L2, associates with condensed
mitotic chromosomes [21,23]. A central region in the L2 minor capsid protein facilitates
viral genome tethering [23]. The HPV-harboring vesicle remains associated with the host
chromosomes until mitosis is finished and the nuclear envelope is restored.

After nuclear delivery, the viral DNA localizes to promyelocytic leukemia nuclear
bodies (PML-NBs) [24], and it is likely that viral transcription and DNA replication initiate
there. Despite the role of host PML-NBs in limiting gene expression of most DNA viruses,
efficient transcription of the HPV genome is reliant on PML-NBs and displacement of the
PML-NB resident protein Sp100 [24]. As such, HPV utilizes some components of PML-NBs,
while evading others to ensure successful infection.

The HPV genome utilizes three phases of viral DNA replication: initial amplifica-
tion, maintenance, and vegetative amplification. During initial amplification, the viral
genome goes through a few rounds of DNA replication to establish a small number of
extrachromosomal genomes that will persist in the self-renewing basal cells of the lower
epithelium. This pool of infected basal cells is the foundation of the infected lesion and
serves as a reservoir for persistent HPV infection. Maintenance replication occurs within
the proliferating cells, and there, the extrachromosomal viral genomes replicate along
with the host cellular DNA and are tethered to host chromatin to ensure partitioning into
daughter cells. Viral copy number is maintained at a constant number until the cells begin
to differentiate and move towards the surface of the epithelium, at which point late viral
gene expression and high levels of DNA amplification occur (Figure 4).
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Figure 3. HPV infectious life cycle. Schematic representation of the differentiated layers of a stratified epithelium infected
with HPV. The virus accesses the basal keratinocytes through a microabrasion. Upon cellular entry, the virus is trafficked
through the endosome and enters the nucleus (encased in a membrane vesicle) following breakdown of the nuclear
membrane during mitosis. Within the nucleus, HPV genomes localize to promyelocytic leukemia nuclear bodies (PML-NBs),
undergo a limited round of DNA synthesis and become established by tethering to host chromatin to maintain the viral
genome at a constant copy number in dividing cells. Upon epithelial differentiation, infected cells amplify the viral DNA
to high copy numbers, and late viral genes are expressed for virion assembly/packaging. Virions are sloughed from the
epithelial surface in viral-laden squames. The different steps in the viral lifecycle are summarized below the schematic and
the corresponding viral protein expression levels indicated on the right.
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Figure 4. Phases of HPV replication. A plot showing the different phases of HPV replication in the host epithelium.
Upon entry, HPV genomes undergo a limited burst of DNA amplification. The viral genome becomes established in the
nucleus, and in the maintenance phase is replicated at a low copy number and partitioned to daughter cells. In differentiated
cells, the viral DNA undergoes a second burst of amplification to a very high copy number to generate genomes for progeny
virions. A model of viral partitioning during the maintenance phase is illustrated; HPV genomes (green circles) attach to
host chromosomes (blue) and are partitioned to daughter cells during mitosis. The mitotic spindle is shown in dark blue.
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During differentiation of keratinocytes, the late promoter located in the E7 gene is
activated, and high levels of the E1 and E2 proteins and late gene products, including E1ˆE4,
L1, and L2, are expressed [18]. Expression of late transcripts that include L1 and L2 depend
on alternate polyadenylation site recognition and alternative splicing mechanisms [18].
Finally, the viral genome is packaged and viral progeny are shed in squames from the
surface of the epithelium [3].

5. Creating an Environment Conducive to Persistent Viral Replication

All papillomaviruses have developed strategies to facilitate viral genome replication
and maintenance within the stratified epithelia. The HR-HPVs use the viral accessory
proteins E5, E6, and E7 to adapt to specific ecological niches, to establish a cellular environ-
ment favorable for viral replication and persistence, and to evade host immunosurveillance
programs [25], as illustrated in Figure 5. Specifically, these proteins modify the cellular
environment to promote persistence within the proliferative basal keratinocytes and to
support vegetative replication within the terminally differentiated keratinocytes. The E5,
E6, and E7 accessory proteins also safeguard the viral genome from host innate and adap-
tive immune responses throughout the infectious cycle. In fact, it has been proposed that
the E6 and E7 activities of the HR-HPVs that promote oncogenesis originally evolved to
inactivate cellular pathways required for immune evasion [26].
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Figure 5. Cellular processes modulated by the high-risk HPV accessory proteins. Schematic representation of the multiple
strategies employed by the E5, E6, and E7 accessory proteins to establish a cellular environment in tissue-specific niches that
supports viral replication and persistence and evade immune surveillance. Abbreviations: cGAS–STING, cyclic GMP–AMP
synthase–stimulator of interferon genes; EGFR, epidermal growth factor receptor; IFN, interferon; NF-κB, nuclear factor
κB, PDZ, postsynaptic density protein, disc large tumor suppressor, zonula occludens-1 domain-containing proteins; pRb,
retinoblastoma protein. Images created with BioRender.com.

5.1. E5, E6, and E7 Proteins Regulate Cellular Proliferation and Differentiation

The capacity of HR-HPVs to persist within the self-renewing cells of the host epithe-
lium relies on a vast array of interactions between the viral E5, E6, and E7 proteins and a
multitude of cellular proteins (Figure 5). These interactions promote proliferation and cell
cycle progression in cells that normally would have exited the cell cycle. Manipulation of
the host cellular environment in this way ensures that the virus has the necessary factors
required for DNA replication.
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The E5, E6, and E7 proteins alter the basal and parabasal epithelial layers of the
squamous epithelium by inducing cell proliferation and delaying differentiation. More-
over, E6 and E7 also drive cell cycle progression and viral genome amplification in the
postmitotic, differentiated cells in the upper epithelial layers. The E5 protein increases cell
proliferation and inhibits keratinocyte differentiation by augmenting epidermal growth
factor receptor (EGFR) signaling [27]. The E6 and E7 proteins regulate cell-cycle entry,
DNA synthesis, long term cell division, keratinocyte differentiation and apoptosis by in-
activating the host p53 and retinoblastoma protein (pRb) tumor suppressor pathways [4].
The Rb protein family regulates the G1–S phase transition of the cell cycle by modulating
the activity of E2F transcription factors. During HR-HPV infection, the E7 protein binds
and degrades pRb [28,29], leading to S-phase entry and host DNA synthesis. E7 expression
results in transcriptional activation of the KDM6A and KDM6B histone demethylases,
which induce global demethylation of histone H3K27 and epigenetic reprogramming of
HPV-positive cells [30]. Global reduction of H3K27 methylation results in increased ex-
pression of the tumor suppressor p16INK4A, which is a mediator of oncogene induced
senescence and a biomarker for HR-HPV infection [31]. However, HR-HPV E7 abrogates
oncogene induced senescence by inactivation of the pRb pathway.

Abrogation of the pRb-E2F pathway by E7 results in increased expression of p53; this
is counteracted by the E6 protein, which instigates the ubiquitin-mediated degradation of
p53 through its interaction with the E3 ubiquitin ligase E6-associated protein (E6AP) [32].
As continual cell division erodes telomeres and results in cellular senescence, the E6 protein
also transcriptionally activates human telomerase reverse transcriptase (hTERT) [33], which
stabilizes the telomere ends and prevents replicative senescence.

In addition, the HR-HPV E6 proteins bind and degrade members of the postsynaptic
density protein, disc large tumor suppressor, zonula occludens-1 domain-containing pro-
teins (PDZ) protein family through interaction with a PDZ binding motif in the C-terminus
of E6 [34]. PDZ domain-containing proteins regulate epithelial cell polarity and asym-
metric cell division and disruption of these processes promotes the infectious life cycle.
Of note, E6 and E7 expression is required for long-term maintenance of viral genomes in
keratinocytes [35–37]. While the E6–PDZ interaction is important for ensuring persistence
of HPV genomes [38], the E6-mediated inactivation of p53 is essential [35,39].

5.2. E5, E6, and E7 Proteins Impede Various Steps of the Innate and Adaptive Immune Responses

The success of HPV as an infectious agent lies within the ability of the virus to
evade host immune responses and establish long-term persistent infection. The infectious
cycle of HPV itself provides barriers to host immune recognition. High levels of viral
gene expression and vegetative amplification occur in differentiated keratinocytes that
are eventually sloughed from the surface of the epithelium by the process of terminal
differentiation. As such, these viral processes are hidden from host immunosurveillance.
Additionally, the virus does not induce cytolytic death and does not stimulate inflammation
and expression of proinflammatory cytokines. These cytokines would normally recruit
immune effector cells that are required for antigen presentation and clearance of virally
infected cells. Collectively, these strategies of viral infection shield the virus from host
innate and adaptive defenses for long and variable periods of time [40].

Host innate immune defenses against viral infection consist of three fundamental
activities: detection of foreign viral nucleic acids, activation of various signal transduction
pathways, and production of proinflammatory and anti-viral cytokines. HR-HPVs have
developed several strategies to evade host immunosurveillance programs and to perturb
innate immune signaling pathways. Specifically, E5, E6, and E7 inhibit host DNA sensors,
interfere with cytokine production, obstruct the activation of signaling pathways, and reg-
ulate proinflammatory responses [41,42]. E7 inhibits the first point of the cellular signaling
cascade by binding to the cytosolic DNA sensor stimulator of interferon genes (STING)
and inhibiting subsequent downstream production of type I interferons (IFNs). E5, E6,
and E7 proteins hinder type I IFN and proinflammatory signal transduction pathways to
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impede Janus kinase/signal transducer and activator of transcription (JAK/STAT) and
nuclear factor κB (NF-κB) signaling [41,43]. Moreover, the E5 protein downregulates the
keratinocyte specific IFN, IFN-K [41]. Finally, E6 and E7 impair the formation of host
inflammasome complexes by reducing recruitment of members of this complex to sites
of viral infection and lowering expression of the secreted form of proinflammatory IL-1,
IL-1B. These mechanisms, along with low expression of innate immune response factors in
the tissues where HPV activity is the highest, contribute to HPV’s success as an infectious
agent [44].

Many viruses have evolved mechanisms to avoid restriction of viral replication caused
by apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3) mu-
tagenesis [45]. Paradoxically, the HR-HPVs induce APOBEC3 expression and it has been
proposed that inactivation of the pRB pathway allows expression of endogenous retro-
transposons, which in turn induce APOBEC3 expression [45]. HPV genomes are somewhat
depleted of APOBEC3 target sequences indicating that APOBEC3 has contributed to the
evolution of HPV genomes [46,47]. Furthermore, persistent cervical infections containing
HPV genomes with APOBEC3 mutational signatures are more likely to be cleared [47].
Thus, it is likely that APOBEC3 enzymes engage with the HPV genome during infection
but it is not clear whether HPVs counteract this response or use it to their advantage [45].

While the innate immune response to viral infection lacks explicit memory, this first
line of defense is crucial to activate an adequate adaptive immune response. The role of
the cell-mediated adaptive immune response is to recognize foreign antigens presented
by antigen presenting cells (APCs) and to destroy and clear virally infected cells. The E5,
E6, and E7 proteins perturb this in three ways; HPV impedes the recruitment of epidermal
APCs, decreases viral antigen uptake in APCs, and downregulates the expression of the
antigen presenting major histocompatibility complex I (MHC I) molecules on the surface
of HPV infected keratinocytes [48,49]. This reduction in surface MHC I molecules helps
avoid recognition of infected cells by cytotoxic T lymphocytes and thus facilitates persistent
infection [49]. The numerous strategies employed by the HR-HPVs to avoid these innate,
and adaptive responses allows the virus to persist within the host keratinocytes and remain
undetected for long periods of time.

6. Papillomavirus Genome Replication
6.1. Initial Stage of Replication

Central to the success of persistent infection is the ability of HPV to replicate and
maintain its genome by hijacking various cellular processes at different stages of the
infectious cycle. Papillomaviruses access the basal layer of the stratified epithelium through
microabrasions and upon entry into the nucleus the E1 and E2 proteins are expressed and
direct low-level amplification of the viral genome. E1 is an ATP-dependent helicase
that binds to and unwinds the viral replication origin. E2 is the primary transcriptional
regulator of the virus, but also functions during replication as the helicase loader. Together,
E1 and E2 cooperatively bind to the replication origin to initiate viral DNA synthesis [50].
The minimal replication origin consists of an E1 binding site (a cluster of overlapping
palindromic recognition sequences), flanked by E2 binding sites (E2BS) (see Figure 6).

The E1 protein has four functional domains, an N-terminal domain that regulates
nucleocytoplasmic transport, a sequence specific DNA binding domain, an oligomerization
domain that induces hexamer formation, and the C-terminal helicase [51]. E2 is composed
of two conserved domains connected by a flexible hinge: an N-terminal transcriptional
activation domain and a sequence specific C-terminal DNA binding domain (Figure 6A).
The E2 protein exists as a dimer and dimerization is mediated through the DNA binding
domain. The unstructured hinge is divergent among papillomavirus species and unnec-
essary for E2 transcription or replication activities, but post-translational modifications
of this region can regulate E2 nuclear localization, half-life, protein–protein interactions,
and host chromatin tethering [52].
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To initiate DNA synthesis, E1 and E2 co-operatively bind to the replication origin;
the DNA binding domain of each protein associates with its respective binding site and
the N-terminal domain of E2 interacts with the E1 helicase domain to form a high affinity
origin recognition complex [53]. Next, a conformational change displaces E2 from the
complex and additional E1 proteins are recruited to form two intermediate E1 trimers at the
origin [54]. Finally, the DNA at the origin is unwound bidirectionally by double-hexameric
E1 helicases [55] and cellular proteins are recruited to synthesize DNA in a theta-mode [51]
similar to other small circular DNA viruses.

6.2. Establishment

After initial HPV DNA amplification, the viral genomes must be “established” in the
host cell nucleus as stable, low copy number extrachromosomal elements. These genomes
must evade detection by innate immune defenses and associate with transcriptionally
active regions of host chromatin, to avoid being silenced [56]. Successful establishment
is most likely a rare event, but it culminates with viral genomes being associated with
favorable regions of host chromatin.

6.3. Maintenance Replication

One hallmark of papillomavirus replication is that the genomes are replicated and
maintained as extrachromosomal plasmids in cell lines derived from cervical lesions, or in
keratinocytes immortalized with HR-HPV genomes. The viral genome is replicated in
S-phase concomitant with cellular DNA replication, and the copy number remains stable
over many cell divisions. This replication mode is thought to represent the maintenance
replication that occurs in the lower, dividing cells of an HPV infected lesion.

The requirements for maintenance replication were first elucidated for bovine papil-
lomavirus type 1 (BPV1) [57]. This showed that the E1 and E2 proteins supported only
transient replication of plasmids containing the minimal replication origin, while long
term maintenance replication required, in addition, regions of DNA from the URR that
contained multiple E2 binding sites. This was the first indication that the E2 protein had
an additional role in maintenance replication, and the subsequent discovery that both the
E2 protein and viral genomes were associated with mitotic chromosomes resulted in the
hitchhiking model [58]. In this model, the E2 protein binds to binding sites in the viral
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genome and tethers the genomes to host chromosomes by protein–protein interactions with
the transactivation domain [59]. Consequently, genomes are partitioned in approximately
equal numbers to daughter cells. This is an appealing strategy, and similar to that used by
the Gammaherpesviruses Epstein Barr virus and Kaposi’s sarcoma herpesvirus, but the exact
mechanism is complex, and many details still need to be determined [60].

In BPV1, six E2 binding sites contained within the enhancer region of the URR form a
minichromosome maintenance element (MME). This MME is required in addition to the
minimal replication origin for maintenance replication [57], and can be substituted by six
oligomerized E2BSs. In contrast, the HR-HPVs contain only four E2BS, three of which
are in the replication origin (Figure 6B). In a plasmid retention assay, two HPV18 E2BS
from the origin were sufficient to maintain non-replicating plasmids in dividing cells [61],
further supporting the role of the E2 protein in this process. In keratinocytes, HPV18-
derived replicons complemented in trans by the entire HPV18 genome required only
the minimal replication origin (with three E2BS) and sequences from the transcriptional
enhancer (designated the minichromosome maintenance enhancer element (MMEE) [62].
Therefore, while the E2 tethering model still holds, it is likely mediated by complexes of the
viral E2 protein and cellular factors associated with the viral genome. Recent studies have
indicated that cis elements outside of the papillomavirus URR might also be important for
maintenance replication. For example, CCCTC-binding factor (CTCF) binding sites located
in the late region of HPV31 promote maintenance replication in dividing cells [63].

Much work has sought to find the target region or target protein of the tethering
complex on host chromosomes. The E2 proteins from many papillomaviruses are observed
in punctate speckles on host chromosomes (e.g., BPV1, HPV E2 proteins from Betapapillo-
maviruses and Mupapillomaviruses) while E2 proteins from the mucosal Alphapapillomaviruses
(LR and HR-HPVs) are difficult to detect on chromosomes by immunofluorescence. Multi-
ple cellular factors may contribute to the tethering complex, but the double bromodomain
factor, bromodomain-containing protein 4 (Brd4), is the most thoroughly investigated
candidate. Brd4 interacts with all E2 proteins to regulate viral transcription [64,65]. In com-
plex with E2, Brd4 represses papillomavirus transcription from the early promoter [66,67],
but promotes early transcription in the absence of E2 [68]. Brd4 also colocalizes with those
E2 proteins that can be readily detected on mitotic chromosomes [64,65,69]. However,
Brd4 interactions with Alphapapillomaviruses are weak and difficult to observe on mitotic
chromosomes except in late telophase or under specific fixation conditions [65,70]. Further-
more, HPV31 genomes with a mutation in E2 that disrupts the interaction of the N-terminal
domain of E2 with the C-terminus of Brd4 can replicate persistently [71]. However, the de-
terminants of the interactions of HPV E2s and Brd4 are complex [72], and the involvement
of Brd4 in many viral processes makes it difficult to determine the precise role of Brd4 in
HPV tethering. Additional candidates proposed to influence genome maintenance in-
clude structural maintenance of chromosome (SMC) architectural proteins, TopBP1, CTCF,
and the DNA helicase ChlR1 [60].

E2 proteins with a high affinity for Brd4 (e.g., HPV1 E2), colocalize with Brd4 as
punctate speckles on mitotic chromosomes [69] and these sites were mapped by Brd4–
E2 ChIP-chip (chromatin immunoprecipitation-chip microarray) [73]. These sites were
shown to be enriched in chromatin acetylation and methylation associated with tran-
scriptionally active chromatin, but also to have many characteristics of common fragile
sites. This led to the hypothesis that E2–Brd4 complexes associated the HPV genomes
with regions of host chromatin susceptible to replication stress and that this might be
advantageous for productive HPV infection in differentiating cells when the viral genome
switches to a recombination-dependent replication mode that relies of the DNA damage
response [74,75]. In situ Hi-C analysis of viral and host DNA interactions in cell lines
with extrachromosomal HPV16 and HPV31 further demonstrated that HPV genomes were
tethered to euchromatic, gene-rich regions of chromatin [76].

There are several ways in which extrachromosomal viral genomes can be partitioned
to daughter cells and this has been best studied for the Gammaherpesviruses [77]. Viral
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genomes can associate with mitotic chromosomes before S-phase with each daughter
molecule being faithfully segregated to a daughter cell in association with the newly
replicated chromosome. Alternatively, viral genomes can randomly associate with host
chromosomes after DNA replication of both the virus and host, with approximately equal
numbers of genomes being partitioned to daughter cells. The association of HPV DNA
with host chromosomes at all stages of the cell cycle [76] suggests that HPV is faithfully
partitioned, but this must still be formally proven.

In general, it is thought that the E1 and E2 proteins initiate viral DNA synthesis at the
replication origin in all modes of replication and additionally that E2 facilitates genome
partitioning in the maintenance phase. However, there is evidence that E1 might not al-
ways be required for extrachromosomal replication during the maintenance phase [78,79].
The E1 protein can induce DNA damage and, concomitantly, the DNA damage response
(DDR) and thus is detrimental to cellular proliferation [80–82]. Nucleocytoplasmic trans-
port of E1 is regulated by phosphorylation of the N-terminal domain, to ensure that E1 is
retained in the cytoplasm except during S-phase replication [81]. Therefore, it would be
advantageous in some circumstances for the cellular replication machinery to initiate DNA
synthesis of the viral genome in the absence of E1.

Cellular DNA is licensed so that it only undergoes one round of replication per cell
cycle. It has long been debated whether papillomavirus genomes are similarly restricted in
the maintenance phase or whether they replicate by a random choice mechanism (some
genomes remaining unreplicated while others undergo multiple rounds of replication).
Taking the evidence together, it seems most plausible that E1-initiated replication undergoes
unlicensed replication and that E1-independent replication is licensed [83]. In this scenario,
DNA amplification at the early and late stages of infection would undergo unlicensed
replication and replication could be either licensed or unlicensed in the maintenance
phase. In cell culture, viral genomes can amplify when cells reach confluence, complicating
analyses of genome licensing [84,85].

All papillomaviruses encode a truncated E2 protein, E8ˆE2, that modulates viral
transcription and replication to maintain the persistent maintenance phase of the life
cycle [86]. The E8ˆE2 repressor protein consists of a short E8 peptide fused to the hinge and
DNA binding domain of the E2 proteins, as shown in Figure 6A [86]. The E8ˆE2 protein can
compete with full-length E2 for binding to the E2BSs to suppress E2 dependent replication
and transcriptional regulation, but E8ˆE2 can also repress by forming heterodimers with the
full-length E2 protein [86]. Additionally, the E8 moiety of the repressor protein recruits the
host nuclear corepressor complex (NCOR/SMRT) to the HPV genomes [87]. Without E8ˆE2,
HPV genomes spontaneously enter the productive phase of the life cycle, inducing the
cellular DDR and inhibiting cell growth [88]. Thus, the E8ˆE2 protein is vital for persistent
HPV infection by repressing the productive phase, thereby maintaining the reservoir of
replicating viral genomes in the basal cells of a lesion.

6.4. Differentiation-Dependent Viral DNA Amplification

Vegetative DNA amplification of the HPV genome occurs in differentiated suprabasal
cells in the upper layers of the stratified epithelium. These terminally differentiated cells
have exited S-phase and no longer contain the replicative factors required to synthesize
DNA. As such, HPV induces host DNA damage signaling and hijacks the cellular DDR
repair machinery as a means to acquire enzymes essential for viral DNA replication in
the G2 arrested cell [89]. Utilization of the host DDR pathway is beneficial to HPV in two
ways: HPV can replicate in terminally differentiated cells, and there is no competition with
the host cell for factors required for DNA synthesis. This replication strategy promotes
persistent low-level DNA replication in the basal cells while simultaneously generating
progeny virions in the terminally differentiated layers of a lesion.

Amplification of the HPV genome takes place in defined nuclear compartments
known as replication factories. These factories mimic endogenous DNA damage foci or
collapsed replication forks and play an important role in activating signaling pathways
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that induce and recruit an influx of repair proteins to sites of viral replication [90]. Various
components of the host DDR signaling pathway including pATM, pATR, γH2AX, pChk2,
pChk1, BRCA1, RAD51, TopBP1, and pNBS1 are recruited to and concentrated in these
factories [74,80,91–95]. Moreover, numerous DDR associated histone acetyltransferases and
deacetylases promote this late stage of replication; both acetyltransferase TIP60 [42] and
the deacetylase, SIRT1, promote productive replication and late gene expression [96,97].
The HR-HPV E7 oncoprotein activates the host ataxia teleangiectasia mutated (ATM) kinase
signaling pathway, which is essential for viral DNA amplification [75]. E7 also hijacks the
E3 ubiquitin–protein ligase RNF168 by blocking its function at cellular double strand breaks
to promote homologous replication at viral replication centers [98]. Thus, E7 promotes
the accumulation of DNA repair factors at the replication foci to facilitate differentiation
dependent genome amplification and processing.

The exact mechanism of vegetative DNA replication is not well elucidated, but the
recruitment of homologous recombination factors to the viral replication foci suggests that
replication switches to a recombination dependent replication mode during vegetative
amplification phase to produce high copy numbers of the viral genome and to facilitate
high fidelity viral DNA synthesis [74,99].

7. Consequences of Persistent Infection with HR-HPVs

One consequence of persistent HR-HPV infection is the accidental integration of the
viral genome into host chromatin [16]. Integration is common in HPV-associated cancers,
but is a dead-end for the virus as they can no longer complete the lifecycle and synthesize
infectious virions. There are several mechanisms by which integration can promote onco-
genesis, and these are in part dependent on where the integration breakpoint occurs in the
viral genome. For example, integration in the E2 gene disrupts E2-mediated repression of
the early promoter and subsequent dysregulation of E6 and E7 gene expression. This results
in increased cellular proliferation, inhibition of cell-cycle checkpoints, and progressive
genetic instability [100]. Integration can also be associated with host genome amplifications
and/or rearrangements that promote oncogenesis. Integrated HPV genomes are detected
in >80% of HPV-positive cervical tumors [101]; HPV18 is integrated in 100% of related
cancers while HPV16 is only integrated in ~74% of cases [101,102]. In HPV-positive oropha-
ryngeal carcinomas, the frequency of integration is lower than in cervical cancer, and the
HPV genome is either extrachromosomal, integrated or a combination of both. It has been
proposed that in some cases the extrachromosomal DNA is composed of viral-host hybrid
DNA molecules [103].

Most HPV-associated cancers result from the undesirable effects of the viral oncopro-
teins in rewiring host cells to support persistent infections. Throughout the viral lifecycle,
papillomavirus genomes associate with regions of transcriptionally active host chromatin
to facilitate viral transcription, replication, persistence, and DNA amplification; notably,
integration often occurs in these regions [104,105]. HPV integration also frequently occurs
in common fragile sites [106,107], which are regions of the genome susceptible to replica-
tion stress. Viral replication occurs proximal to fragile sites and could greatly increase the
chances of integration at these genetically unstable regions [73].
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